Warmup

- 1. $\log_{10} 7 + \log_{10} (n-2) = \log_{10} 6n$ 14
- 2. $\log_{10}(m+3) \log_{10}m = \log_{10}4$ 1
- 3. $\log_{10} x + \log_{10} x + \log_{10} x = \log_{10} 27$ 3
- 4. $4 \log_5 x \log_5 4 = \log_5 4$ 2
- 5. $\log_2 15 + \log_2 14 \log_2 105 = \log_2 x$ 2 6. $2\log_3 x + \log_3 \frac{1}{10} = \log_3 5 + \log_3 2$ 10 7. $\log_4(x+2) + \log_4(x-4) = 2$ 6

Properties

$$\log_3 x^5 = 5 \log_3 x$$
$$\log_3 xy = \log_3 x + \log_3 y$$
$$\log_7 \frac{x}{y} = \log_7 x - \log_7 y$$

$$4 \log_5 x - \log_5 4 = \log_5 x^4 - \log_5 4$$
$$= \log_5 \frac{x^4}{4}$$

2 of 10

Combine into one log

1.
$$2\log x^2 - 3\log \sqrt{x} - 2$$

 $\log \frac{x^2 \sqrt{x}}{100}$

2.
$$\log_4\left(x\left(\log_2\frac{\sqrt{2}}{2}\right)\right) - \log_8 16$$

 $\log_4\frac{-x\sqrt[3]{2}}{16}$

6.6 - Solving Exponential and Logarithmic Equations

Solve

$$3^{\log_3 x} = 3x - 4$$
$$x = 3x - 4$$
$$x = 2$$

Simplify

1.
$$6^{\log_6(x+2)} = 2x - 6$$
 2. $4^{\log_2(x+1)} = 25$

$$x = 8 \qquad \qquad x = 4, \not \rightarrow 6$$

3 of 10

4 of 10

 $10^{x} = 27$ $\log_{10} 10^{x} = \log_{10} 27$ $x = \log_{10} 27$ use a calculator x = 1.43...

Solve

5 of 10

Solve

$$10^{x} = 27$$

 $\log_{10} 10^{x} = \log_{10} 27$
 $x = \log_{10} 27$ use a calculator
 $x = 1.43...$

Practice

1. $10^{-3x} = 0.28$ 2. $100^{-x} = \log_3(3\log_5 125)$

0.18 -0.15

What about if not the same base?
$$5^x = 27$$

6 of 10

Logarithm Change of Base Property Proof

 $k = \log_a x$ $5^k = 27$ $k = \log_5 27$ $a^k = x$ $k = \frac{\log 27}{\log 5}$ $\log_{h}(a^{k}) = \log_{h} x$ $k \log_{h} a = \log_{h} x$ $k = \frac{1.431}{0.699}$ $k = \frac{\log_b x}{\log_b a}$ k = 2.048 $\log_a x = \frac{\log_b x}{\log_b a}$ $5^{2.048} = 27$

7 of 10

Changing Bases

$$5^{k} = 27$$

 $k = \log_{5} 27$
 $k = \frac{\log 27}{\log 5} = 2.048$

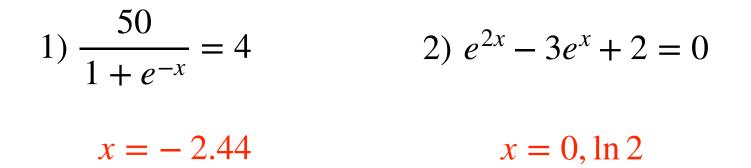
Simplify

1. $3^x = 40$ 2. $12^{-2x} = \log_2 133$

-1-

x = 3.36 x = -0.39

What about?
$$6^{(x+2)} = 24^{(-2x+1)}$$


6.6 - Solving Exponential and Logarithmic Equations

8 of 10

Solve the expression $2e^{12x} = 17$ $e^{12x} = \frac{17}{2}$

$$12x = \log_e 8.5$$
 $x = 0.17833$

Practice

6.6 - Solving Exponential and Logarithmic Equations

9 of 10

Solve the expression

log x + log(x - 1) = log(4x) x² - x = 4x log x(x - 1) = log(4x) x² - 5x = 0log(x² - x) = log(4x) x(x - 5) = 0 x = ¥ 5

Practice

- 1) $\log_2 3 + \log_2 x = \log_2 5 + \log_2 (x 2)$ 2) $\log_2 (x^2 - x - 2) = \log_2 2$ x = 5
 - x = -2, 3

6.6 - Solving Exponential and Logarithmic Equations

Solving Equations

$$12^{2x} = 48$$
$$\log_{12} 12^{2x} = \log_{12} 48$$
$$2x = \log_{12} 48$$
$$x = \frac{\log 48}{2\log 12} = 0.8$$

$$\log_{e} x = \ln x$$

$$\ln e^{5} = 5$$

$$\ln 4 - \ln 10 = \ln \frac{4}{10}$$

$$= \ln 0.4 = -0.92$$

Practice

1. $\ln 3x = 2$ x = 2.462. $\ln 3 + \ln 2x = \ln 36$ x = 1.393. $3e^{2x} + 2 = 50$ x = 1.39